186 research outputs found

    Using temporal correlation in factor analysis for reconstructing transcription factor activities

    Get PDF
    Two-level gene regulatory networks consist of the transcription factors (TFs) in the top level and their regulated genes in the second level. The expression profiles of the regulated genes are the observed high-throughput data given by experiments such as microarrays. The activity profiles of the TFs are treated as hidden variables as well as the connectivity matrix that indicates the regulatory relationships of TFs with their regulated genes. Factor analysis (FA) as well as other methods, such as the network component algorithm, has been suggested for reconstructing gene regulatory networks and also for predicting TF activities. They have been applied to E. coli and yeast data with the assumption that these datasets consist of identical and independently distributed samples. Thus, the main drawback of these algorithms is that they ignore any time correlation existing within the TF profiles. In this paper, we extend previously studied FA algorithms to include time correlation within the transcription factors. At the same time, we consider connectivity matrices that are sparse in order to capture the existing sparsity present in gene regulatory networks. The TFs activity profiles obtained by this approach are significantly smoother than profiles from previous FA algorithms. The periodicities in profiles from yeast expression data become prominent in our reconstruction. Moreover, the strength of the correlation between time points is estimated and can be used to assess the suitability of the experimental time interval

    Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome

    Get PDF
    Escherichia coli has long been regarded as a model organism in the study of codon usage bias (CUB). However, most studies in this organism regarding this topic have been computational or, when experimental, restricted to small datasets; particularly poor attention has been given to genes with low CUB. In this work, correspondence analysis on codon usage is used to classify E.coli genes into three groups, and the relationship between them and expression levels from microarray experiments is studied. These groups are: group 1, highly biased genes; group 2, moderately biased genes; and group 3, AT-rich genes with low CUB. It is shown that, surprisingly, there is a negative correlation between codon bias and expression levels for group 3 genes, i.e. genes with extremely low codon adaptation index (CAI) values are highly expressed, while group 2 show the lowest average expression levels and group 1 show the usual expected positive correlation between CAI and expression. This trend is maintained over all functional gene groups, seeming to contradict the E.coli–yeast paradigm on CUB. It is argued that these findings are still compatible with the mutation–selection balance hypothesis of codon usage and that E.coli genes form a dynamic system shaped by these factors

    Solving the riddle of codon usage preferences: a test for translational selection

    Get PDF
    Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model

    Investigating inter-chromosomal regulatory relationships through a comprehensive meta-analysis of matched copy number and transcriptomics data sets.

    Get PDF
    BACKGROUND: Gene regulatory relationships can be inferred using matched array comparative genomics and transcriptomics data sets from cancer samples. The way in which copy numbers of genes in cancer samples are often greatly disrupted works like a natural gene amplification/deletion experiment. There are now a large number of such data sets publicly available making a meta-analysis of the data possible. RESULTS: We infer inter-chromosomal acting gene regulatory relationships from a meta-analysis of 31 publicly available matched array comparative genomics and transcriptomics data sets in humans. We obtained statistically significant predictions of target genes for 1430 potential regulatory genes. The regulatory relationships being inferred are either direct relationships, of a transcription factor on its target, or indirect ones, through pathways containing intermediate steps. We analyse the predictions in terms of cocitations, both publications which cite a regulator with any of its inferred targets and cocitations of any genes in a target list. CONCLUSIONS: The most striking observation from the results is the greater number of inter-chromosomal regulatory relationships involving repression compared to those involving activation. The complete results of the meta-analysis are presented in the database METAMATCHED. We anticipate that the predictions contained in the database will be useful in informing experiments and in helping to construct networks of regulatory relationships

    A comparison of machine learning and Bayesian modelling for molecular serotyping.

    Get PDF
    BACKGROUND: Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. RESULTS: We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. CONCLUSIONS: With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological insights, which we illustrate with an example

    Empirical Bayesian models for analysing molecular serotyping microarrays.

    Get PDF
    BACKGROUND: Microarrays offer great potential as a platform for molecular diagnostics, testing clinical samples for the presence of numerous biomarkers in highly multiplexed assays. In this study applied to infectious diseases, data from a microarray designed for molecular serotyping of Streptococcus pneumoniae was used, identifying the presence of any one of 91 known pneumococcal serotypes from DNA extracts. This microarray incorporated oligonucleotide probes for all known capsular polysaccharide synthesis genes and required a statistical analysis of the microarray intensity data to determine which serotype, or combination of serotypes, were present within a sample based on the combination of genes detected. RESULTS: We propose an empirical Bayesian model for calculating the probabilities of combinations of serotypes from the microarray data. The model takes into consideration the dependencies between serotypes, induced by genes they have in common, and by homologous genes which, although not identical, are similar to each other in sequence. For serotypes which are very similar in capsular gene composition, extra probes are included on the microarray, providing additional information which is integrated into the Bayesian model. For each serotype combination with high probability, a second model, a Bayesian random effects model is applied to determine the relative abundance of each serotype. CONCLUSIONS: To assess the accuracy of the proposed analysis we applied our methods to experimental data from samples containing individual serotypes and samples containing combinations of serotypes with known levels of abundance. All but two of the known serotypes of S. pneumoniae that were tested as individual samples could be uniquely determined by the Bayesian model. The model also enabled the presence of combinations of serotypes within samples to be determined. Serotypes with very low abundance within a combination of serotypes can be detected (down to 2% abundance in this study). As well as detecting the presence of serotype combinations, an approximate measure of the percentage abundance of the serotypes within the combination can be obtained.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Creating web applications for spatial epidemiological analysis and mapping in R using Rwui.

    Get PDF
    BACKGROUND: Creating a user friendly web based application which executes an R script allows physicians, epidemiologists, and others unfamiliar with the statistical language to perform powerful statistical analyses easily. The geographic mapping of data is an important tool in spatial epidemiological analysis, and the R project includes many tools for such analyses, but few for visualization. Hence, web applications that run R for epidemiological analysis need to be able to present the results in a geographic format. RESULTS: Rwui is a web application for creating web based applications for running R scripts. We describe updates to Rwui that enable it to create web applications for R scripts which return the results of the analysis to the web page as geographic maps. CONCLUSIONS: Rwui enables statisticians to create web applications for R scripts without the need to learn web programming. Creating a web application provides users access to an R based analysis without the need to learn R. Recent updates to Rwui have increased its applicability in the field of spatial epidemiological analysis.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore